3.382 \(\int \frac{(a+b x)^{2/3}}{x} \, dx\)

Optimal. Leaf size=92 \[ \frac{3}{2} a^{2/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )+\sqrt{3} a^{2/3} \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )-\frac{1}{2} a^{2/3} \log (x)+\frac{3}{2} (a+b x)^{2/3} \]

[Out]

(3*(a + b*x)^(2/3))/2 + Sqrt[3]*a^(2/3)*ArcTan[(a^(1/3) + 2*(a + b*x)^(1/3))/(Sqrt[3]*a^(1/3))] - (a^(2/3)*Log
[x])/2 + (3*a^(2/3)*Log[a^(1/3) - (a + b*x)^(1/3)])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0320364, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385, Rules used = {50, 55, 617, 204, 31} \[ \frac{3}{2} a^{2/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )+\sqrt{3} a^{2/3} \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )-\frac{1}{2} a^{2/3} \log (x)+\frac{3}{2} (a+b x)^{2/3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(2/3)/x,x]

[Out]

(3*(a + b*x)^(2/3))/2 + Sqrt[3]*a^(2/3)*ArcTan[(a^(1/3) + 2*(a + b*x)^(1/3))/(Sqrt[3]*a^(1/3))] - (a^(2/3)*Log
[x])/2 + (3*a^(2/3)*Log[a^(1/3) - (a + b*x)^(1/3)])/2

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 55

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, -Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(a+b x)^{2/3}}{x} \, dx &=\frac{3}{2} (a+b x)^{2/3}+a \int \frac{1}{x \sqrt [3]{a+b x}} \, dx\\ &=\frac{3}{2} (a+b x)^{2/3}-\frac{1}{2} a^{2/3} \log (x)-\frac{1}{2} \left (3 a^{2/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}-x} \, dx,x,\sqrt [3]{a+b x}\right )+\frac{1}{2} (3 a) \operatorname{Subst}\left (\int \frac{1}{a^{2/3}+\sqrt [3]{a} x+x^2} \, dx,x,\sqrt [3]{a+b x}\right )\\ &=\frac{3}{2} (a+b x)^{2/3}-\frac{1}{2} a^{2/3} \log (x)+\frac{3}{2} a^{2/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )-\left (3 a^{2/3}\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}\right )\\ &=\frac{3}{2} (a+b x)^{2/3}+\sqrt{3} a^{2/3} \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}}{\sqrt{3}}\right )-\frac{1}{2} a^{2/3} \log (x)+\frac{3}{2} a^{2/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0761639, size = 86, normalized size = 0.93 \[ \frac{3}{2} \left (a^{2/3} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )+(a+b x)^{2/3}\right )+\sqrt{3} a^{2/3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}+1}{\sqrt{3}}\right )-\frac{1}{2} a^{2/3} \log (x) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(2/3)/x,x]

[Out]

Sqrt[3]*a^(2/3)*ArcTan[(1 + (2*(a + b*x)^(1/3))/a^(1/3))/Sqrt[3]] - (a^(2/3)*Log[x])/2 + (3*((a + b*x)^(2/3) +
 a^(2/3)*Log[a^(1/3) - (a + b*x)^(1/3)]))/2

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 84, normalized size = 0.9 \begin{align*}{\frac{3}{2} \left ( bx+a \right ) ^{{\frac{2}{3}}}}+{a}^{{\frac{2}{3}}}\ln \left ( \sqrt [3]{bx+a}-\sqrt [3]{a} \right ) -{\frac{1}{2}{a}^{{\frac{2}{3}}}\ln \left ( \left ( bx+a \right ) ^{{\frac{2}{3}}}+\sqrt [3]{a}\sqrt [3]{bx+a}+{a}^{{\frac{2}{3}}} \right ) }+{a}^{{\frac{2}{3}}}\sqrt{3}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{\frac{\sqrt [3]{bx+a}}{\sqrt [3]{a}}}+1 \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(2/3)/x,x)

[Out]

3/2*(b*x+a)^(2/3)+a^(2/3)*ln((b*x+a)^(1/3)-a^(1/3))-1/2*a^(2/3)*ln((b*x+a)^(2/3)+a^(1/3)*(b*x+a)^(1/3)+a^(2/3)
)+a^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/a^(1/3)*(b*x+a)^(1/3)+1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(2/3)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.9108, size = 333, normalized size = 3.62 \begin{align*} \sqrt{3}{\left (a^{2}\right )}^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3} a + 2 \, \sqrt{3}{\left (a^{2}\right )}^{\frac{1}{3}}{\left (b x + a\right )}^{\frac{1}{3}}}{3 \, a}\right ) - \frac{1}{2} \,{\left (a^{2}\right )}^{\frac{1}{3}} \log \left ({\left (b x + a\right )}^{\frac{2}{3}} a +{\left (a^{2}\right )}^{\frac{1}{3}} a +{\left (a^{2}\right )}^{\frac{2}{3}}{\left (b x + a\right )}^{\frac{1}{3}}\right ) +{\left (a^{2}\right )}^{\frac{1}{3}} \log \left ({\left (b x + a\right )}^{\frac{1}{3}} a -{\left (a^{2}\right )}^{\frac{2}{3}}\right ) + \frac{3}{2} \,{\left (b x + a\right )}^{\frac{2}{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(2/3)/x,x, algorithm="fricas")

[Out]

sqrt(3)*(a^2)^(1/3)*arctan(1/3*(sqrt(3)*a + 2*sqrt(3)*(a^2)^(1/3)*(b*x + a)^(1/3))/a) - 1/2*(a^2)^(1/3)*log((b
*x + a)^(2/3)*a + (a^2)^(1/3)*a + (a^2)^(2/3)*(b*x + a)^(1/3)) + (a^2)^(1/3)*log((b*x + a)^(1/3)*a - (a^2)^(2/
3)) + 3/2*(b*x + a)^(2/3)

________________________________________________________________________________________

Sympy [C]  time = 2.77062, size = 182, normalized size = 1.98 \begin{align*} \frac{5 a^{\frac{2}{3}} \log{\left (1 - \frac{\sqrt [3]{b} \sqrt [3]{\frac{a}{b} + x}}{\sqrt [3]{a}} \right )} \Gamma \left (\frac{5}{3}\right )}{3 \Gamma \left (\frac{8}{3}\right )} + \frac{5 a^{\frac{2}{3}} e^{\frac{2 i \pi }{3}} \log{\left (1 - \frac{\sqrt [3]{b} \sqrt [3]{\frac{a}{b} + x} e^{\frac{2 i \pi }{3}}}{\sqrt [3]{a}} \right )} \Gamma \left (\frac{5}{3}\right )}{3 \Gamma \left (\frac{8}{3}\right )} + \frac{5 a^{\frac{2}{3}} e^{- \frac{2 i \pi }{3}} \log{\left (1 - \frac{\sqrt [3]{b} \sqrt [3]{\frac{a}{b} + x} e^{\frac{4 i \pi }{3}}}{\sqrt [3]{a}} \right )} \Gamma \left (\frac{5}{3}\right )}{3 \Gamma \left (\frac{8}{3}\right )} + \frac{5 b^{\frac{2}{3}} \left (\frac{a}{b} + x\right )^{\frac{2}{3}} \Gamma \left (\frac{5}{3}\right )}{2 \Gamma \left (\frac{8}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(2/3)/x,x)

[Out]

5*a**(2/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)/a**(1/3))*gamma(5/3)/(3*gamma(8/3)) + 5*a**(2/3)*exp(2*I*pi/3)*lo
g(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(2*I*pi/3)/a**(1/3))*gamma(5/3)/(3*gamma(8/3)) + 5*a**(2/3)*exp(-2*I*
pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(4*I*pi/3)/a**(1/3))*gamma(5/3)/(3*gamma(8/3)) + 5*b**(2/3)*(
a/b + x)**(2/3)*gamma(5/3)/(2*gamma(8/3))

________________________________________________________________________________________

Giac [A]  time = 1.73107, size = 116, normalized size = 1.26 \begin{align*} \sqrt{3} a^{\frac{2}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x + a\right )}^{\frac{1}{3}} + a^{\frac{1}{3}}\right )}}{3 \, a^{\frac{1}{3}}}\right ) - \frac{1}{2} \, a^{\frac{2}{3}} \log \left ({\left (b x + a\right )}^{\frac{2}{3}} +{\left (b x + a\right )}^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}\right ) + a^{\frac{2}{3}} \log \left ({\left |{\left (b x + a\right )}^{\frac{1}{3}} - a^{\frac{1}{3}} \right |}\right ) + \frac{3}{2} \,{\left (b x + a\right )}^{\frac{2}{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(2/3)/x,x, algorithm="giac")

[Out]

sqrt(3)*a^(2/3)*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3)) - 1/2*a^(2/3)*log((b*x + a)^(2/3) +
(b*x + a)^(1/3)*a^(1/3) + a^(2/3)) + a^(2/3)*log(abs((b*x + a)^(1/3) - a^(1/3))) + 3/2*(b*x + a)^(2/3)